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1. Introduction

Using a bladder or diaphragm as a means of obtaining positive expulsion
of a propellant from a tank has attractive features. The volumetric efficiency,
the fraction of total volume alloted to the propellant storage and expulsion
system taken up by the propellant itself, is high, perhaps a maximum in com-
parison with other expulsion devices.* If the thin, flexible, shell is de-
signed correctly, the expulsion efficiency, the fraction of total volume of
propellant stored which is expelled, can be as high as 1.0. Correct design
can also mean that a relatively low pressure differential is required to force
the shell through the expulsion process. Furthermore, if either the shell ma-
terial can withstand repeated folding or suitable control schemes are employed
to achieve a desired deformation pattern restricting the extent of folding,
then recycling of the bladder or diaphragm would be possible. Whether folding
can be tolerated or not depends primarily on the material of the shell. The
propellant's chemical properties determine, for the most part, the choice of
material. Since the propellant may be stored for lengthy periods of time be-
fore expulsion, consideration must be given to the possibility of permeation
of propellant through the shell walls or degradation of the shell material

properties.

The design of a propellant expulsion bladder or diaphragm satisfying
the aforementioned criteria (high volumetric and expulsion efficiency, low
pressure differential driving force, recycle capability, propellant-material
compatibility) remains a formidable problem. Most design to date has been via
the seat of the pants. This is not surprising since the complexity of the
deformation process experienced by an expulsion device of this type makes any

rational analysis exceedingly difficult.

A glance at the collapsed configuration of a Teflon film, Teflon felt,
aluminum foil, layered, hemispherical bladder, shown in Psgy. ¢ of kef. 2,
indicates the arbitrary, nonlinear nature of the deformation experience by

this type of expulsion device. Other tests indicate that a bladder or diaphragm,

*
For a comprehensive survey of the characteristics of a more general range of

expulsion devices, see Reference 1.




initially in the form of a shell of revolution, the convoluted hemispherical
diaphragm for example (Ref. 3}, does not deform in an axisymmetric way. At
some point in the expulsion process nonaxisymmetric deformation is initiated,
leading to the generation of creases, wrinkles, single or double folds. Even
if the material can withstand a limited amount of folding or creasing, this so-
called, "random deformation" may result in pockets of trapped propellant or
premature closing of the exit port(s). 1In either case, the anticipated ex-
pulsion efficiency of the device may not be achieved. If the shell must be
made of metal in order to satisfy the propellant-material compatibility re-
quirement, then one preliminary analysis (Ref. 4) indicates that the occur-

rence of a double fold will lead to failure on the first expulsion cycle.

Ih order to establish a rational procedure for the design of expulsion
devices, a coordinated program of appropriate analysis and testing, one must
attempt to achieve some understanding of the fundamental mechanisms involved
in the deformation process. In this investigation, attention is directed
toward the behavior of the reversing diaphragm initially in the form of a shell
of revolution. The hemispherical diaphragm shown in Fig. 1 is one possible

configuration.

Observation of tests performed on a diaphragm of this kind, leads to

the following characterization of the deformation process:

(1) Initially, the shell deforms in an axisymmetric fashion.

A shallow portion near the apex becomes concave upwards.
(2) At some point, nonaxisymmetric deformation initiates.

(3) These wrinkles grow into folds in what appears to be a

nondeterministic process as the diaphragm collapses.



FIG. 1 REVERSING HEMISPHERICAL DIAPHRAGM

With this picture in mind, we may pose the following series of questions.
What pressure differential is required to drive the shell through the axi-
symmetric stages of deformation? What mechanism is the cause of the initiation
of nonaxisymmetric deformation? What is the extent of folding, i.e., single
folds, double folds? Is recycling a possibility? What is the extent of
plastic flow? When and where does it occur? What is the primary failure

mechanism?

In order to evaluate a particular design, one would like to have avail-
able a set of appropriate analytical and experimental techniques which would
provide answers to these guestions in a definitive and quantitative way. These
techniques should describe the effect of: variations in shell geometry and
material properties, the introduction of stiffners, layering of different

materials, etc., on the performance of the diaphragm.

The main thrust of this investigation has been to attempt to answer the




first two questions listed above and to establish the necessary analytical
techniques required to predict the effect of variations in design parameters
on these answers. As such, this work represents a first step in the under-
standing of the deformation process experienced by the reversing diaphragm;

a first element of a systematic plan for the determination of the efficiency
and operational life of such metallic and nonmetallic propellant expulsion de-

vices as bladders and diaphragms.

2. Analysis of the Axisymmetric Deformation of a Radially-
Constrained, Spherical Shell under External Pressure

In this section, attention is directed to the problem involving the de-
termination of the axisymmetric equilibrium configuration of a reversing dia-
phragm in the state shown in Fig. 2.1. Appropriate equations of equilibrium
and compatibility of deformation have been deduced by E. Reissner (Refs. 5, 6).
We show that this system of equations admits the possibility of the existence
of an edge zone in the vicinity of the point where the detached portion of the
shell comes in contact with the restraining tank surface. On either side of
this edge zone, a solution is easily obtained. In the edge zone, however, the
nonlinear system of equations describing the behavior of the shell, although
simpler in form than the complete, general system, demand considerable effort

in order to obtain a solution.




2.1 Membrane Behavior - "Attached" Portion

Since the displacement normal to the midsurface of the shell must vanish
along the attached portion, cd, the bending moment and transverse shear like-
wise are zero in this region. The shell behaves then as a membrane. Equilibrium

of an element of the shell is satisfied if:

%(NHS'N?S) — NZZCOS'?S =0 (2.1.1a)

3 .
F{ (2.1.1b)

where Nll is the meridional stress resultant, N22, the circumferential stress

resultant and P3 the reactive normal force per unit area exerted on the shell

by the constraining tank.

The stress-strain relations are

Eh
Nn - U‘“VZB Q&H+\)Ezl> - (2.1.2a)

|}

Eh £+ VE
= , (2.1.2b)
22 (1= Vﬂ ( '

and the strain displacement relations are

< _ 1 dug

TR g (2.1.3a)
E = __'.—- cCoT WL
2. R Sﬁ T (2.1.3b)




The first equilibrium equation, in terms of the tangential displacement,

U using £g4s. (2.1.2) and (2.1.3) becomes

2,

C£1LLT Cos¢ dUr — (:jigfé:éi'ﬂ“ 1)>kx. = 0O

e YN d & SINTD T (2.1.4)
The boundary conditions on u,, may be taken as:

= K. —
at ¢ =5 W_=o (2.1.5a)
* : .

at ?5 = ?S LLT== A& (assued prescribed) (2.1.5b)

The solution to this problem was obtained by a regular series expansion

about ¢ = /2. (See Ref. 7 for the details of this solution procedure.)

Having uT(¢), the stress resultants Nll and N22 are obtained from Egs.

(2.1.2) and (2.1.3). 1In terms of uT, we have

dw
— bt & Vv u CoTd
N = (:— v?) RL T ]

N = Eh W CoT@ +ViuT
" Z T ?5
22 (=¥ R

Of particular interest is the effective stiffness of this constrained
portion as ¢* varies. Plotted in Fig. 2.2 is the way in which this stiffness,
as measured by (Nll/Eh)/(A/R), changes as ¢* ranges from 15° to 90°. Also
plotted is the ratio (N /Eh)/(A/R) Note that the nondimensionalized value
of the meridional stress resultant N /Eh  is of order A/R. (Recall that A

ll
is the tangential displacement at ¢
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FIG. 2.2



2.2 Behavior of "Detached" Portion

For the detached portion of the shell, (ac), Reissner's equations
apply for this case of finite displacements and rotations. The solution of
this fourth order system of two coupled, nonlinear, differential equations
presents a formidable problem. It is shown in the following that considerable

simplification is achieved by pursuing an asymptotic solution.

For a spherical shell, under external pressure P, Reissner's equations

may be put into the fo:m:
Equilibrium

[5(N§SV] = ~PR SIN$ Cos &

(2.2.1a)

[SlNgS H} - Ne —PRSIN® SIND = O

(2.2.1b)

.2.1c¢)

{SIN 56 ME]/— MBC-OS% ~Rsing(Veos - H 5!(:;55)‘#0

Stress~Strain

' — [
(2.2.2a) 55 ~ Eh (N*; vNe); £ :E-;:(Ne—\)Ng\) (2.2.2b)

e
— K
(2.2.2¢c) M‘Z = D Kg+ VKo Me” D( K+ EB (2.2.2d)
Strain~Displacement
(2.2.3a) & = 2 cos & + cos & 2 ) RSIN;é (2.2.3b)
| , (sin F— Sing)
(2.2.3¢) K§ = Q-EL§ -1) , Kg= — RSN (2.2.3d)



Compatibility of Deformation

/

[Swséﬁe] = 5; cosd + (cosF — cosd)

(2.2.4)
Ms,
Vv
Mg Ng
Ny‘\ H
TuJ
-———»
FIG. 2.4 w
In the above system, (refer to Fig. 2.4), V and H are vertical and
horizontal stress resultants, respectively. They are related to the membrane
stress resultant Ng and transverse shear Q via
H = Nzc_osé - Q3n~ b (2.2.5a)
\/ - No SIN g? + QQ(;cﬁS qg
E (2.2.5b)




Prime denotes differentiation with respect to the independent variable
¢, the slope of the meridional in the undeformed, spherical state. ¢ is this
slope in the deformed state. R 1s the radius of the sphere, h its thickness;
B, Young's modulus; V, Poisson's ratio and D is the shell bending stiffness

D = ERS/12(1 - Vo).

As shown in Refs. 5 and 6, this system of equations may be reduced
to two coupled, second-order nonlinear differential equations for the hori-
zontal stress resultant, H, and the slope of the meridional tangent in the de-

formed state, ¢. For our spherical shell, these two equations become:

SIN 515{ (SIN$ H)/ — PR SIN® SING — V(H cosP + \/S:r\@)}

/

— LHCC’S? +VSIND ~ V{(Sw;é H)/— PR SIN$ SIN @}}c_osé

= Eh(Cosé"‘C’Cﬁ‘#)

| y (2.2.6a)
[omet é/“' N S)Ng’iN‘quINc#)J
SIN - SIN e
* SIN ¢ FYLE ,)} °s
— _Ei_ swg&(\] cosP - H SIN §> (2.2.6b)

2.2.1 Detached Portion - Far-Field Solution

For the detached portion of the shell, region ab in Fig. 2.1, the far
field solution (the state of affairs away from the edge zone) is obtained by
considering the relative orders of magnitudes of terms in our system of equa-
tions. An appropriate balance of terms, leading to the existence of an edge

zone, is obtained via the following set of assumptions.

10



(i) Assume, in the far field, that derivatives with

respect to ¢ are of order 1.0.

(ii) From Eq. (2.2.1a), V is of order P.R. Since, for a
spherical shell under external pressure, the buckling

. 2,2 2 2. .
load, p, is of order E(h /R ), we assume P(R /Eh ) is

of order 1.0 at most.

(1ii) Assume H is of order Eh(h/R). It will be seen that
this yields an appropriate balance of terms and the

existence of an edge zone.

Dividing Eg. (2.2.6a) through by the order of magnitude of H, we see
that all terms on the left-hand side of this relationship are of order 1.0
at most, whereas the right-hand side is of order R/h. Similarly, all terms
on the left-hand side of Eq. (2.2.6b) are of order 1.0, whereas the right-hand

side is, again, of order R/h.

This implies that, in the far field away from the edge zone, the

stress and deformation state of the shell is described approximately by

Cosd — Cosp =0 (2.2.7a)

HSINS_}_S — VCOS§ = O

(2.2.7b)

The solution to the first of these two equations we take as

@ — __cf,) (2.2.8)

That is, in the detached portion away from the edge zone, the con-
figuration of the shell is a reflection of its undeformed state about a plane

perpendicular to the radius 0 a and passing through b.

With this, the state of stress, strain and deformation within this

portion of the shell is found to be:

11




- — PR
= + PR cosdé NS NZ" T
2-
_ PR PR )
o = e 7Y, By = R (7Y
K = ngé_ F( - _gg_
© R, 2y R

Moo= 221+ , ME'—*——%Q-('”)

2.
— _.-—PB—-—— Y —1) SIN
W= -——-( ) Sing

As far as the contribution of the membrane stress resultants is con-

cerned, we see that we have a state of stress equivalent to a spherical shell

under internal pressure.

2.2.2 Detached Portion - Edge-Zone Formulation

It is obvious that the far field solution cannot fit the required con-
ditions at that point where the shell comes in contact with the restraining
tank. In order to make things right, we assume that there exists an edge zone
within which derivatives with respect to ¢ are of order VR/h . This restores
the presence of the highest derivatives in Egqs. (2.2.6a) and (2.2.6b), which,

in turn, enables us to satisfy the appropriate boundary conditions at the con-
tact point.

a
Thus, in the edge zone we have, noting that sin¢ v sind)O and

N,
cosd v cos¢o, in this region.

SlquSo H” = Eh(cosd — cosh)
2.

SB// _ _”_%__Q\]c_osf_ﬁ~+-{6w§)

(2.2.9a)

(2.2.9b)
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These are the same equations developed by E. Reissner (Ref. 8) in
obtaining nonlinear influence coefficients for edge loading of deep shells of

revolution.

Proceeding now to a nondimensionalization of the edge zone problem,

we set

S = >\<_75b - ¢) (2.2.10a)
) N Ji2(=V) _ OL—B—\)

T 2h - h (2.2.10b)

= Eh ~
H — go 3(5> 9 8’0 - R /,20_\)2) SIN;zSo (2.2.11a)

and

« _ PRVIZU-V) SN,

P = T (2.2.11b)

With these, our system of equations becomes

fg__&__ — (COS§~C0575>

CL_SZ. SIN (2.2.12a)
L & . + g SIND
A g% Swgé ( P cos ¢ d ) (2.2.12b)

The complete statement of the edge zone problem, requires that boundary

conditions be prescribed.

Since these conditions will involve the horizontal displacement, u,
bending moment Mg and membrane stress resultants NE and NG’ we must consider

their role in this edge zone system.

From Eq. (2.2.1b) we must have

13




No = Sing A g 32 = o(En k)

From Egs. (2.2.5a) and {(2.2.5b) we have

Ny = 5,(7 o § P E) = o(Eh)

From Eq. (2.2.2b), then
— SIN 750 A 813 Ci‘ik —_— \/]5;—
e = T En = = °Y%)

From Eqg. (2.2.3b), it follows

S R Z A ) fi:gt- = 0O AR
W = - 5|N7% 3, T (V >

With regard to the bending moments, we have from (2.2.3c) and (2.2.34)

A d |
kijé = -+ —Ei— —;f%é— = O Q NN )

_ —(S|N§——-5|N<I>o) _ 0
Se = R\Sn\lcfi O(R§
From (2.2.3a) then
r 4E o) - olelfF)
Mg = Prids T OUNRR T >

Recall that away from the edge zone, the far field solution yields
W = OU'\,)

b4§; = O <\EElz:- ”E£;>

14



Requiring that the edge zone solution match the far field solution as

L approaches infinity, we obtain

@ = 750 (2.2.13a)

s )
a5 =~ ° o P =0 (2.2.13b)

At the other boundary, =0, at that point where the shell comes into
contact with the restraining tank wall, we require that the membrane stress

resultant be continuous across the contact point (Z=+E to [=-t)
NE+ = N{
We also require continuity of displacement

w = w
+

and finally, that ¢ and ' be continuous.
This last requirement yields

———igi- = O s =0
45 4
since, everywhere within the attached portion this quantity is of order

1/x = /h/R.
Now, as indicated by Fig. 2.2
B N-)
- o(BN-
W_ ERh %
With the above, this may be written as
R ) _
= o(-5—nN,) = o(h)
Thus we conclude that, at § = 0
A ¢
A3

Summarizing, we have as our problem the solution of the fourth order

- O

system

15




2.

Ay _ 2 (Coscﬁ — Cos 75() = 0 (2.2.12a)

dgz‘ 5!(\1 -
Le PcO5§+g-SJN§)
4 5% S'N#’ ( (2.2.12b)

with the following boundary conditions

As \S-——‘» "'—W

¢ — - 950 (2.2.13a)

d &

T —= O on —_—
A< AT (2.2.13b)

At = =0
¢ = + 9’50 (2.2.14a)
.___j_’___ = O (2.2.14b)
LS
d $ = O 2.2.14c)
L ‘

Note that five boundary conditions are required since ¢o is not known
a priori. (We assume P* is prescribed.)

2.2.,3 Solution of the Edge Zone Problem

In solving the system of equations (2.2.12a) through (2.2.14c), one
would expect to obtain a relationship between the pressure differential P*
and the contact angle @o. In the following we show that consistent with the
order of approximation of our asymptotic procedure, P* is zero. Proof of this

follows from the generation of a first integral of our systemn.

le



This first integral is obtained by multiplying Eg. (2.2.12a)by dg/di;
Eg. (2.2.12b) by d9/dC and forming the difference. In this way we obtain

A2 T (SEY g [ateos g e Pondag,

where C 1s a constant of integration.

Applying the boundary conditions at ¢ = 0, Egs.

+ 4P =

we obtain

On the other hand, as [ > «, we expect d%/dC and dg/df to approach zero with
$ approaching - ¢0. This yields

%*
— 4P =C
These last two relationships imply

C. = F:’.)(r = O

Apparently, then, in order to have equilibrium configurations of the
. , . ) \ 2
form displayed in Fig. 1, P* is not of order 1.0. Alternatively, PR2/Bh
is of order vh/R at most.

The solution procedure employed has been presented in Ref. 9. Of
interest here are the results obtained. Having obtained ¢ and g as functions
of , stress and moment resultants and the displacement u(f) are given by the

following:

= cos $L3)
Ng = 73(s)
g Ji2(i—v?) RSN 750 (2.2.16a)
= g

Ne - T R ,} [2(1-V7) OLE (2.2.16b)
DA 4P
z R 45

7
DR V4 d g
w(s) = “S'N¢><4E_n EE3

I

M

(2.2.17)

(2.2.18)
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Wnhere, as before

3
& = R(Eh>
2 D
The results of this analysis are displayed in Figs. 2.4 through 2.11

In the first three figures are plotted nondimensional values of N

gl
NG’ and Mg as functions of [ for various values of separation angle ¢O. In
Ne,
M, = = g(s)(coT$ cosp S
E ER 2= R S
Ne _ e
> —t
© M E‘\/./tzgz—-vz)f{ s

. d
 — T bHax =t 1=

M

I

Observe that critical stress conditions are due to the action of ne
and mB, i.e.,

o| = o5 = o(5l})
@ ~
o], = o5 = (5)
3
N v
| = O(T\TE* ::OQE.——{><< crlM

s 2
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The deformed configuration of the shell in the vicinity of the contact

point for various values of @o is shown in the remaining five figures.

A cautionary note must be introduced here. In the formulation of the
problem, it was assumed that ¢O was of order 1.0. If ¢O is a smaller order
of magnitude, the problem must be reformulated within the framework of
shallow shell theory. Thus, the validity of the results of the analysis for

small ¢o; e.g., $ = 10°, is subject to question.
o
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FIG.2.4 NONDIMENSTIONALIZED MERIDIONAL STRESS-RESULTANT



FIG. 2.5 NONDIMENSIONALIZED CIRCUMFERENTIAL STRESS-RESULTANT




FIG. 2.6 NONDIMENSTONALIZED MERIDTONAL MOMENT
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FIG. 2.10 DEFORMED CONFIGURATION OF THE SHELL AT ¢



F1G. 2,11 DEFORMED CONFIGURATION OF THE SHELL AT S N

27




3. The Initiation of Nonaxisymmetric Deformation-

Problem Formulation

Given this solution for the axisymmet:ic deformation of the constrained
sphere, one may proceed to investigate the possibility of asymmetric deforma-
tion; the onset of wrinkling. The extreme compressive stress conditions
existing within the edge zone suggests that nonaxisymmetric deformation will
be initiated within this same region. To determine when wrinkling initiates,

we admit the possibility of the existence of small, nonaxisymmetric, displace~

ments and rotations in the neighborhood of our previously determined, axi-
symmetric configuration. An appropriate system of equations describing this
situation is the Donnell-Mushtari-Vlosov system written with respect to the

deformed, axisymmetric state.

Z(#)

FIG. 3.1
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In the following, we take as our independent variable in the meridional
direction the slope of the meridional in the undeformed configuration, ¢, and

in the circumferential direction, the polar angle, 0.

Defining the geometric pargmeters a, Rl and R2 by
dz dr
Lé ~ L SIN$ Frie < Cos P (3.1a)
| _ 1 d& 1 _ Sing
R, < déb R, Vs (3.1b)
The equilibrium equations of the Donnell system become (Ref. 10)
/ o
(2 N“\ + (X NQ) —XCosP N,, =0 (3.2a)
o o
= O
(€ sz) + (> Nz:) + o Cos® Ny, (3.2b)
N ° Ny N
(2Q) + X Q) — n«(——f + ———-—>
| 2 R R
[ = (3.2¢)

B (”%‘NQ - ("( »LQ.N6> = O
/ o]
(}zMH) + (ol M,,) — X Cos §M?_2—-o</?_QI=O<3.zd>

o / _
(= M,,) 4—(7?,?\4&‘) + & Cos §M2|~°<’LQ2_‘O(3.2e)

In the above equations prime denotes differentiation with respect to ¢, and
dot denotes differentiation with respect to 0. Ng and Ng are the meridional
and circumferential stress resultants existing in the axisymmetric, deformed

state as defined by Egs. (2.2.16a) and (2.2.16Db).

The stress—strain relations are

29




N“ :“—E—E-_._)’\/____.__.——-—\—<E! ’f‘\)E \ N - "‘E‘-“‘L}"""(Ez‘"’”vE“\ (3.3a,b)

1 P
i 22705 Yog (ihvl)\

(3.3c)

MH = ’D('<“+' V K2_2> MZ'Z_: D( K22_+ \)KH (3.4a,b)

2
MIQ_ = le = 'DQ—\)) Kis 3. 40)
The strain-displacement relationships are:
’ ° 2 W
l YA S VA ANV
Eu - :{U T R, 7 527__“ W TR U+ (3.5a,b)
/ o /
Ve
— = L N +- S ——-——-——VJ
= EZ’ 2 = 7z X7 (3.5¢)
/ ’
- 1 ° 72
KH - < f:i > K22_~ b2 iUz + ;2_‘,( | (3.6a,b)
‘ / | © / —
= = —1_ L ¢ - = (3.6¢)
Kl?. Kzl 2 [& _\[/2 + . %‘ 0</°L%2_

Wby

v =V P o= W (3.7a,b)

The boundary conditions on an edge ¢ = constant take the form
N = o© o U = O (3.8a)

N,»= O o= \J =o

(3.8b)
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| N a
K, +?(M'l - EL;N§ =0 o W =0 (3.8¢)

MH - O 0 f‘ = O {3.8d)
This system cf homogeneous equations (3.2) through (3.8) constitutes an
eigenvalue problem. The eigenvalue, which we may take as ¢O, is imbedded in
the "prebuckling" stress resultants Ng and Ne. We expect that nonaxisymmetric
deformation states, nontrivial solutions to this system, exist only at dis-
crete values of the separation angle ¢o. A first step in the solution of this
problem is accomplished by elimination of dependence on the polar angle 6.
Setting
{ 1

22 272 )

) Q‘ )MH )MZ?—) El\ 2 E KH JKZZ’?‘)U)W}

= ﬁﬁ”\u , M, %‘ PR n, e , 8, Ky KZI,)ZT)LL)\U}

SIN &6
i PQ‘2. ? GQZ.J r\412.) EEIZ_) k<|2_ 3 HPZ__>‘Q7 l

= { rhl?_ 2 %z) W\lz > 6.2 P K,l) %,V} Coske

2.

where k is an integer and nll' n22 .e

Our system of equations becomes:

+r My d, ... are functions only of ¢.

Equilibrium

/
(/7_1/\,”> — b W‘Z__ o cos P n,, = O (3.9a)
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/
R mn, LT (?l’h + X cosdFn, =0 (3.9b)

)~ ey = (R ) (o N k<50

/
(o)) — RXm; — cosPim,, =X =0 @)

/
ko m, | A (o) + < cos Eim = AXF R0 3.0

Stress~strain

Eh Eh
M, = -——-——-—"—"U o9 (f” —+ 1)’622)7 ’)’\2_2_: = ’1)2') ‘6.22_4— W)CH) (3.10a,b)
Eh
iz = +v 12 (3.10c)
= DQKH L K-u) , M, = D(KZ{_*‘ Y IC,) (3.11a,b)
= Y
W\l?_ D( ) K.l‘z. (3.11c)
Strain-Displacement p
’ ’{Q_,V o _.l'.\.)_.SlNéF
W+ W , & = - + + S
= ”; R, 22 . e X (3.12a,b)
/ /
e - L[v _ &uw_ 2 }
12~ 2 L r o (3.12c)
o K =k g
= — = - + 3.13a,b
Ku =< SL\) 2 2.2, > 5[/2_ R (3-13a,5)



’ /
L[ . £, S
Kn__ :-—-9:[‘;(“‘%;_ +Tyj - o 2 %’Z] (3.13c)

In the above equations

I 7/
%l) =W (3.14a)
k.
>U,_ == W (3.14b)
Boundary Conditions
On ¢ = constant
h, = © 0% U= o0 (3.15a)
M, =o e V=20
(3.15b)
%_ﬁ!—w\ — Y N_ =0 O W =0 (3.15¢)
[ =4 2. { g
- o — 3.154
m, =0 52 %‘ o ( )

This completes the formulation of the eigenvalue problem. The solution
of this problem defines that value of separation angle, ¢o, when nonaxisymmetric
deformation is possible; i.e., when folding is initiated. It is expected that
some simplification in the solution to this rather formidable problem may be
achieved by the same asymptotic techniques used to determine the axisymmetric

deformation states.

4. Summary of Results

The preceding effort has focused on the understanding of one phase of
the diaphragm deformation process; the axisymmetric, nonlinear behavior of the

constrained hemisphere. The results of this analysis show that, even at
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moderate separation angles, extreme stress and strain states are generated in
a narrow edge zone in the shell near the separation point. An important con-
sequence of this asymptotic procedure is that it is only the geometry of the

shell in the vicinity of the separation point which is important in the evalu-
ation of the edge zone behavior. Hence, our results apply to any simply-con-

nected shell of revolution.

Although it remains to be shown, we feel that it is the extreme stress
state in this edge zone which leads to the initiation of nonaxisymmetric de-
formation. The solution of the eigenvalue problem posed in Section 3 will
yield values of separation angle at which folding initiates. It will also
provide the preferred circumferential wave number k. This information might

be of use in the designing of meridional stiffners.

An important result of this analysis is the fact that the pressure
differential required to deform the constrained shell, once it has assumed the

configuration depicted in Fig. 2.1, is essentially zero. More precisely,

—é&i/{ = o(ﬁé‘} at most.

5. Recommendations for Future Work

The results obtained in this effort represent a first step in the under-
standing of the deformation of a reversing diaphragm. Attention has been limited
to the axisymmetric, elastic behavior of an isotropic shell of revolution; the
initial phase in the deformation process. It is recommended that the following

analysis be attempted for this same phase.

(1) Consider the effect of employing a layered shell construction
on the edge zone state. This might require consideration of

transverse shear deformation.

(2) Consider the effect of orthotropic construction in the
shell surface. The introduction of preferred direction
of stiffness might alleviate the extreme conditions

existing in the edge zone.

(3} Consider the possibility and consequences of plastic flow.
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